This mathematics test contains 15 questions. In all questions only one answer is correct and brings 2 points. Wrong answer, as well as the case of more than one answer, brings 0 points.

1. The value of the expression

$$
\left(\frac{2^{-4}+3^{-2}}{2^{-1}-3^{-1}}:(0,5)^{3}-3^{-1}\right)^{\frac{1}{3}}
$$

is equal to:

1) 8 ;
2) 2 ;
3) $\sqrt[3]{\frac{4}{3}}$
4) $\sqrt[3]{2}$;
5) $-\frac{1}{2}$.
2. The amount of water that should be added to 140 ml of alcohol solution of concentration 96%, in order to get alcohol solution of concentration 70%, is:
1) 75 ml of water;
2) 70 ml of water;
3) 48 ml of water;
4) 52 ml of water;
5) 62 ml of water.
3. If α and β are real solutions of the equation $x^{2}-(a-2) x+2 a-7=0$, then $\alpha+\beta>0$, if and only if:
1) $\frac{7}{2}<a \leqslant 4$ or $a \geqslant 8$;
2) $a \leqslant 4$ or $a \geqslant 8$;
3) $2<a \leqslant 4$ or $a \geqslant 8$;
4) $a<2$;
5) $2<a \leqslant 8$.
4. The product of all solutions of the equation $\sqrt{7 x^{2}+1}=x^{2}-1$ is equal to:
1) -9 ;
2) -3 ;
3) 0 ;
4) 3 ;
5) 9 .
5. The solution of the equation

$$
9^{x+3}+27 \cdot 6^{x+3}=6^{x+5}-27 \cdot 9^{x+2}
$$

belongs to the interval:

1) $(-\infty,-3]$;
2) $(-3,-2]$;
3) $(-2,0]$;
4) $(0,2]$; 5$)(2,+\infty)$.
6. The value of the expression

$$
\sqrt{\left(\log _{3} \frac{1}{9}\right)^{2}} \cdot \sqrt[3]{\log _{2} \frac{1}{256}}
$$

is equal to:

1) 32 ;
2) 16 ;
3) -4 ;
4) 4 ;
5) -16 .
7. The value of the expression $\operatorname{tg} 15^{\circ}-\operatorname{ctg} 15^{\circ}$ is equal to:
1) $\sqrt{3}$;
2) $-\frac{2 \sqrt{3}}{3}$;
3) 1 ;
4) $-\frac{\sqrt{3}}{2}$;
5) $-2 \sqrt{3}$.
8. The equation $\sin ^{2} \frac{x}{2}-\cos ^{2} x=0$ in interval $[0,2 \pi]$:
1) has exactly one solution;
2) has exactly two solutions;
3) has exactly three solutions;
4) has exactly four solutions;
5) has exactly five solutions.
9. The triangle $A B C$ is determined by its vertices $A=(2,2), B=(5,-1)$ and $C=(2,-4)$. If the point $O=(x, y)$ is the center of the circle that passes through all the vertices (circumcenter), then $x+y$ is equal to:
1) 1 ;
2) -1 ;
3) 2 ;
4) 0 ;
5) 3 .
10. Tangent line t of the parabola $y^{2}=18 x$ is parallel to the line $3 x-y+4=0$. The equation of tangent line t is:
1) $3 x-y=0$;
2) $3 x-y-3=0$;
3) $3 x-y+3=0$;
4) $6 x-2 y+3=0$;
5) $6 x-2 y+1=0$.

6) $\frac{x}{x+1}$;
7) $\frac{x}{x+2021}$;
8) $\frac{x}{2021 x+1}$;
9) $\frac{2021 x}{2021 x+1}$;
10) x.
12. If $f(x)=\frac{1}{x}$ and $g(x)=\sqrt{x-1}$, then $f\left(g^{-1}(2)\right) \cdot g^{-1}(f(2))$ is equal to:
1) $\frac{1}{3}$;
2) -1 ;
3) $\frac{1}{2}$;
4) $\frac{4}{3}$;
5) $\frac{1}{4}$.
13. In arithmetic sequence $\left(a_{n}\right)$ term a_{1011} is equal to 1 . The sum of the first 2021 terms of this sequence is:
1) 2020 ;
2) 2021 ;
3) 4042 ;
4) $\frac{2021}{2}$;
5) 4040 .
14. In ascending geometric sequence the first and the third term are in relation 4:9, and the subtract between the fourth and the second term is 15 . The second term of this sequence is equal to:
1) 18 ;
2) 8 ;
3) $\frac{81}{2}$;
4) 12 ;
5) 27 .
15. If the polynomial $P(x)=x^{3}+a x+b$ is divisible by polynomials $x-1$ and $x-2$, then the reminder in the division of polynomial $P(x)$ by $x-3$ is equal to:
1) 12 ;
2) 0 ;
3) 8 ;
4) 40 ;
5) 54 .
